Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
ASAIO J ; 68(12): 1434-1442, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2051666

ABSTRACT

Clinical presentation and mortality of patients treated with extracorporeal membrane oxygenation (ECMO) for COVID-19 acute respiratory distress syndrome (CARDS) were different during the French epidemic waves. The management of COVID-19 patients evolved through waves as much as knowledge on that new viral disease progressed. We aimed to compare the mortality rate through the first three waves of CARDS patients on ECMO and identify associated risk factors. Fifty-four consecutive ECMO for CARDS hospitalized at Amiens University Hospital during the three waves were included. Patients were divided into three groups according to their hospitalization date. Clinical characteristics and outcomes were compared between groups. Pre-ECMO risk factors predicting 90 day mortality were evaluated using multivariate Cox regression. Among 54 ECMO (median age of 61[48-65] years), 26% were hospitalized during the first wave (n = 14/54), 26% (n = 14/54) during the second wave, and 48% (n = 26/54) during the third wave. Time from first symptoms to ECMO was higher during the second wave than the first wave. (17 [12-23] days vs. 11 [9-15]; p < 0.05). Ninety day mortality was higher during the second wave (85% vs. 43%; p < 0.05) but less during the third wave (38% vs. 85%; P < 0.05). Respiratory ECMO survival prediction score and time from symptoms onset to ECMO (HR 1.12; 95% confidence interval [CI]: 1.05-1.20; p < 0.001) were independent factors of mortality. After adjustment, time from symptoms onset to ECMO was an independent factor of 90 day mortality. Changes in CARDS management from first to second wave-induced a later ECMO cannulation from symptoms onset with higher mortality during that wave. The duration of COVID-19 disease progression could be selection criteria for initiating ECMO.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Middle Aged , Aged , Extracorporeal Membrane Oxygenation/adverse effects , COVID-19/epidemiology , COVID-19/therapy , Treatment Outcome , Respiratory Distress Syndrome/therapy , Hospital Mortality , Retrospective Studies
2.
J Clin Med ; 11(13)2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-1911422

ABSTRACT

INTRODUCTION: Right ventricular (RV) systolic dysfunction (RVsD) is a common complication of coronavirus infection 2019 disease (COVID-19). The right ventricular free wall longitudinal strain parameter (RV-FWLS) is a powerful predictor of mortality. We explored the performance of RVsD parameters for predicting 30-day mortality and the association between RV-FWLS and 30-day mortality. METHODS: COVID-19 patients hospitalized at Amiens University Hospital in the critical care unit with transthoracic echocardiography were included. We measured tricuspid annular plane systolic excursion (TAPSE), the RV S' wave, RV fractional area change (RV-FAC), and RV-FWLS. The diagnostic performance of RVsD parameters as predictors for 30-day mortality was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). RVsD was defined by an RV-FWLS < 21% to explore the association between RVsD and 30-day mortality. RESULTS: Of the 116 patients included, 20% (n = 23/116) died and 47 had a RVsD. ROC curve analysis showed that RV-FWLS failed to predict 30-day mortality, as did conventional RV parameters (all p > 0.05). TAPSE (21 (19-26) mm vs. 24 (21-27) mm; p = 0.024) and RV-FAC (40 (35-47)% vs. 47 (41-55)%; p = 0.006) were lowered in the RVsD group. In Cox analysis, RVsD was not associated with 30-day mortality (hazard ratio = 1.12, CI 95% (0.49-2.55), p = 0.78). CONCLUSION: In severe COVID-19 pneumonia, RV-FWLS was not associated with 30-day mortality.

3.
Anesthésie & Réanimation ; 2022.
Article in French | EuropePMC | ID: covidwho-1863837

ABSTRACT

Plus de 5 millions de personnes en France ont présenté une infection par le SARS-CoV-2. Lors des précédentes épidémies de coronavirus (SARS-CoV, Mers-CoV), les patients ont développé des séquelles pulmonaires avec une dyspnée, une diminution de la capacité de diffusion du monoxyde de carbone et/ou des lésions de fibrose. Le but de cette revue était d’évaluer les séquelles respiratoires et de faire une synthèse des principaux symptômes respiratoires après une infection au COVID-19 et de leurs étiologies. Les quatre principales causes de dyspnée sont les séquelles respiratoires, le déconditionnement, l’hyperventilation et les causes classiques de dyspnée. Les principales séquelles respiratoires étaient l’altération de la capacité de diffusion du monoxyde de carbone et le schéma de fibrose. La prévalence de ces séquelles respiratoires est actuellement inconnue.

4.
Anesthésie & Réanimation ; 2022.
Article in English | ScienceDirect | ID: covidwho-1850633

ABSTRACT

Résumé Plus de 5 millions de personnes en France ont présenté une infection par le SARS-CoV-2. Lors des précédentes épidémies de coronavirus (SARS-CoV, Mers-CoV), les patients ont développé des séquelles pulmonaires avec une dyspnée, une diminution de la capacité de diffusion du monoxyde de carbone et/ou des lésions de fibrose. Le but de cette revue était d’évaluer les séquelles respiratoires et de faire une synthèse des principaux symptômes respiratoires après une infection au COVID-19 et de leurs étiologies. Les quatre principales causes de dyspnée sont les séquelles respiratoires, le déconditionnement, l’hyperventilation et les causes classiques de dyspnée. Les principales séquelles respiratoires étaient l’altération de la capacité de diffusion du monoxyde de carbone et le schéma de fibrose. La prévalence de ces séquelles respiratoires est actuellement inconnue. Summary More than 5 millions of people in France have presented a SARS-CoV-2 infection. In the previous coronavirus epidemics (SARS-CoV, Mers-CoV), patients have developed pulmonary sequelae with dyspnoea, DLCO decrease and/or fibrosis lesions. The purpose of this review was to evaluate the respiratory sequelae and to do a summary of the main respiratory symptoms after a COVID-19 infection and their aetiologies. The four main causes of dyspnoea are respiratory sequelae, deconditioning, hyperventilation and classical causes of dyspnoea. The main respiratory sequelae were DLCO alteration and fibrosis pattern. Actually, the prevalence of these respiratory sequelae is unknown.

5.
J Clin Med ; 11(9)2022 May 06.
Article in English | MEDLINE | ID: covidwho-1847356

ABSTRACT

INTRODUCTION: Right ventricular systolic dysfunction (RVsD) increases acute respiratory distress syndrome mortality in COVID-19 infection (CARDS). The RV longitudinal shortening fraction (RV-LSF) is an angle-independent and automatically calculated speckle-tracking parameter. We explored the association between RV-LSF and 30-day mortality in CARDS patients. METHODS: Moderate-to-severe CARDS patients hospitalized at Amiens University Hospital with transesophageal echocardiography performed within 48 h of intensive care unit admission were included. RVsD was defined by an RV-LSF of <20%. The patients were divided into two groups according to the presence of RVsD. Using multivariate Cox regression, clinical and echocardiographic risk factors predicting 30-day mortality were evaluated. RESULTS: Between 28 February 2020 and 1 December 2021, 86 patients were included. A total of 43% (n = 37/86) of the patients showed RVsD and 22% (n = 19/86) of the patients died. RV-LSF was observed in 26 (23.1-29.7)% of the no-RVsD function group and 16.5 (13.7-19.4)% (p < 0.001) of the RVsD group. Cardiogenic shock (n = 7/37 vs. 2/49, p = 0.03) and acute cor pulmonale (n = 18/37 vs. 10/49, p = 0.009) were more frequent in the RVsD group. The 30-day mortality was higher in the RVsD group (15/37 vs. 4/49, p = 0.001). In a multivariable Cox model, RV-LSF was an independent mortality factor (HR 4.45, 95%CI (1.43-13.8), p = 0.01). CONCLUSION: in a cohort of moderate-to-severe CARDS patients under mechanical ventilation, RVsD defined by the RV-LSF was associated with higher 30-day mortalities.

6.
Front Med (Lausanne) ; 8: 710992, 2021.
Article in English | MEDLINE | ID: covidwho-1581309

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which targets the pulmonary vasculature is supposed to induce an intrapulmonary right to left shunt with an increased pulmonary blood flow. We report here what may be, to the best of our knowledge, the first videoendoscopic descriptions of an hypervascularization of the bronchial mucosa in two patients hospitalized for coronavirus disease 2019 (COVID-19) pneumonia. Cases Presentation: Two patients, 27- and 37-year-old, were addressed to our Pneumology department for suspicion of COVID-19 pneumonia. Their symptoms (fever, dry cough, and dyspnoea), associated to pulmonary ground glass opacities on thoracic CT, were highly suggestive of a COVID-19 disease despite repeated negative pharyngeal swabs RT-PCR. In both patients, bronchoscopy examination using white light was unremarkable but NBI bronchoscopy revealed a diffuse hypervascularization of the mucosa from the trachea to the sub-segmental bronchi, associated with dilated submucosal vessels. RT-PCR performed in bronchoalveolar lavage (BAL) confirmed the presence of Sars-CoV-2. Conclusions: These two case reports highlight the crucial importance of the vascular component of the viral disease. We suggest that such bronchial hypervascularization with dilated vessels contributes, at least in part, to the intrapulmonary right to left shunt that characterizes the COVID-19 related Acute Vascular Distress Syndrome (AVDS). The presence of diffuse bronchial hypervascularization in the context of COVID-19 pandemic should prompt the search for Sars-CoV-2 in BAL samples.

7.
Crit Care ; 25(1): 400, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526655
9.
Heart Lung ; 50(6): 818-824, 2021.
Article in English | MEDLINE | ID: covidwho-1293813

ABSTRACT

BACKGROUND: Although an RT-PCR test is the "gold standard" tool for diagnosing an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), chest imaging can be used to support a diagnosis of coronavirus disease 2019 (COVID-19) - albeit with fairly low specificity. However, if the chest imaging findings do not faithfully reflect the patient's clinical course, one can question the rationale for relying on these imaging data in the diagnosis of COVID-19. AIMS: To compare clinical courses with changes over time in chest imaging findings among patients admitted to an ICU for severe COVID-19 pneumonia. METHODS: We retrospectively reviewed the medical charts of all adult patients admitted to our intensive care unit (ICU) between March 1, 2020, and April 15, 2020, for a severe COVID-19 lung infection and who had a positive RT-PCR test. Changes in clinical, laboratory and radiological variables were compared, and patients with discordant changes over time (e.g. a clinical improvement with stable or worse radiological findings) were analyzed further. RESULTS: Of the 46 included patients, 5 showed an improvement in their clinical status but not in their chest imaging findings. On admission to the ICU, three of the five were mechanically ventilated and the two others received high-flow oxygen therapy or a non-rebreather mask. Even though the five patients' radiological findings worsened or remained stable, the mean ± standard deviation partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2:FiO2) ratio increased significantly in all cases (from 113.2 ± 59.7 mmHg at admission to 259.8 ± 59.7 mmHg at a follow-up evaluation; p=0.043). INTERPRETATION: Our results suggest that in cases of clinical improvement with worsened or stable chest imaging variables, the PaO2:FiO2 ratio might be a good marker of the resolution of COVID-19-specific pulmonary vascular insult.


Subject(s)
COVID-19 , Adult , Humans , Intensive Care Units , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
10.
World J Clin Cases ; 9(14): 3385-3393, 2021 May 16.
Article in English | MEDLINE | ID: covidwho-1232704

ABSTRACT

BACKGROUND: Several reports with clinical, histological and imaging data have observed the involvement of lung vascular function to explain the severe hypoxemia in coronavirus disease 2019 (COVID-19) patients. It has been hypothesized that an increased pulmonary blood flow associated with an impairment of hypoxic pulmonary vasoconstriction is responsible for an intrapulmonary shunt. COVID-19 may lead to refractory hypoxemia (PaO2/FiO2 ratio below 100 mmHg) despite mechanical ventilation and prone positioning. We hypothesized that the use of a pulmonary vasoconstrictor may help decrease the shunt and thus enhance oxygenation. CASE SUMMARY: We report our experience with three patients with refractory hypoxemia treated with almitrine to enhance oxygenation. Low dose almitrine (Vectarion®; Servier, Suresnes, France) was started at an infusion rate of 4 µg × kg/min on a central line. The PaO2/FiO2 ratio and total respiratory system compliance during almitrine infusion were measured. For the three patients, the PaO2/FiO2 ratio time-course showed a dramatic increase whereas total respiratory system compliance was unchanged. The three patients were discharged from the intensive care unit. The intensive care unit length of stay for patient 1, patient 2 and patient 3 was 30 d, 32 d and 31 d, respectively. Weaning from mechanical ventilation was performed 13 d, 18 d and 15 d after almitrine infusion for patient 1, 2 and 3, respectively. We found no deleterious effects on the right ventricular function, which was similar to previous studies on almitrine safety. CONCLUSION: Almitrine may be effective and safe to enhance oxygenation in coronavirus disease 2019 patients. Further controlled studies are required.

11.
PLoS One ; 16(2): e0246636, 2021.
Article in English | MEDLINE | ID: covidwho-1069631

ABSTRACT

BACKGROUND: Data on microcirculatory pattern of COVID-19 critically ill patients are scarce. The objective was to compare sublingual microcirculation parameters of critically ill patients according to the severity of the disease. METHODS: The study is a single-center prospective study with critically ill COVID-19 patients admitted in ICU. Sublingual microcirculation was assessed by IDF microscopy within 48 hours of ICU admission. Microcirculatory flow index (MFI), proportion of perfused vessel (PPV), total vessel density (TVD), De Backer score (DBS), perfused vessel density (PVD) and heterogeneity index (HI) were assessed. Patients were divided in 2 groups (severe and critical) according to the World health organization definition. FINDINGS: From 19th of March to 7th of April 2020, 43 patients were included. Fourteen patients (33%) were in the severe group and twenty-nine patients (67%) in the critical group. Patients in the critical group were all mechanically ventilated. The critical group had significantly higher values of MFI, DBS and PVD in comparison to severe group (respectively, PaCO2: 49 [44-45] vs 36 [33-37] mmHg; p<0,0001, MFI: 2.8 ± 0.2 vs 2.5 ± 0.3; p = 0.001, DBS: 12.7 ± 2.6 vs 10.8 ± 2.0 vessels mm-2; p = 0.033, PVD: 12.5 ± 3.0 vs 10.1 ± 2.4 mm.mm-2; p = 0.020). PPV, HI and TVD were similar between groups Correlation was found between microcirculatory parameters and PaCO2 levels. CONCLUSION: Critical COVID-19 patients under mechanical ventilation seem to have higher red blood cell velocity than severe non-ventilated patients.


Subject(s)
COVID-19/physiopathology , Critical Illness , Microcirculation/physiology , Microvessels/physiopathology , Aged , COVID-19/virology , Carbon Dioxide/metabolism , Female , Hemodynamics , Humans , Intensive Care Units , Male , Middle Aged , Oxygen/metabolism , Partial Pressure , Prospective Studies , SARS-CoV-2/physiology
12.
BMC Infect Dis ; 21(1): 122, 2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1054804

ABSTRACT

BACKGROUND: SARS-CoV-2 virus which targets the pulmonary vasculature is supposed to induce an intrapulmonary right to left shunt with an increased pulmonary blood flow. Such vascular injury is difficult to observe because it is hidden by the concomitant lung injury. We report here what may be, to the best of our knowledge, the first case of a pure Covid-19 related Acute Vascular Distress Syndrome (AVDS). CASE PRESENTATION: A 43-year-old physician, tested positive for Covid-19, was addressed to the emergency unit for severe dyspnoea and dizziness. Explorations were non informative with only a doubt regarding a sub-segmental pulmonary embolism (no ground-glass lesions or consolidations related to Covid-19 disease). Dyspnoea persisted despite anticoagulation therapy and normal pulmonary function tests. Contrast-enhanced transthoracic echocardiography was performed which revealed a moderate late right-to-left shunt. CONCLUSIONS: This case report highlights the crucial importance of the vascular component of the viral disease. The intrapulmonary shunt induced by Covid-19 which remains unrecognized because generally hidden by the concomitant lung injury, can persist for a long time. Contrast-enhanced transthoracic echocardiography is the most appropriate test to propose in case of persistent dyspnoea in Covid-19 patients.


Subject(s)
COVID-19/physiopathology , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2/pathogenicity , Adult , COVID-19/diagnostic imaging , COVID-19/pathology , Dyspnea/diagnostic imaging , Echocardiography , Humans , Lung/diagnostic imaging , Lung/pathology , Lung/physiopathology , Male , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL